ЛитМир - Электронная Библиотека
Содержание  
A
A

  Первоначально Ф. создавалась как способ фиксации портретных или натурных изображений за периоды времени, много меньшие, чем требуются для той же цели художнику. Однако по мере расширения возможностей Ф. стал увеличиваться и круг решаемых ею задач, чему особенно способствовало появление кинематографии и цветной фотографии , соответственно возрастали роль и значение Ф. в жизни человечества. В 20 в. Ф. стала одним из важнейших средств информации и документирования (фиксация лиц, событий и т.п.), технической основой самого массового вида искусства – киноискусства , входит в число основных технических средств полиграфии , служит орудием исследования во многих отраслях науки и техники. Это разнообразие задач, решаемых с помощью Ф., позволяет считать её одновременно разделом науки, техники и искусства.

  Независимо от области применения Ф. можно подразделить на более частные виды по многим признакам, например: по временному характеру изображения – на статическую и динамическую (наиболее важным примером которой служит кинематография); по химическому составу СЧС – на серебряную (более строго – галогенидо-серебряную) и несеребряную; по способности передавать только яркостные или также и цветовые различия в объекте – на черно-белую и цветную; в зависимости от того, передаются ли изменения яркостей в объекте различиями поглощения света в изображении или различиями оптической длины пути света в нём – на амплитудную и фазовую; по пространственному характеру изображений – на плоскостную и объёмную. Последнее разделение, впрочем, требует оговорки: любое фотографическое изображение само по себе является плоским, а его объёмность (в частности, в стереоскопической Ф.) достигается одновременной съёмкой объекта с двух близких точек и последующим рассматриванием сразу двух снимков (при этом каждого из них только одним глазом). Совершенно особым видом объёмной Ф. можно считать голографию , но в ней способ записи оптической информации об объекте и его пространственных свойствах принципиально иной, чем в «обычной» Ф., и похож на Ф. только использованием СЧС для записи информации.

  Исторический очерк. История Ф. начинается с опытов, в которых на бумагу или холст с помощью камеры-обскуры проектировали изображение объекта и зарисовывали его. Эти опыты начались не позднее конца 15 в.; о них знал и сам воспроизводил их ещё Леонардо да Винчи . Однако Ф. в собственном смысле слова возникла значительно позднее, когда не только стало известно о светочувствительности многих веществ, но и появились приёмы использования и сохранения изменений в таких веществах, вызванных действием света. В числе первых светочувствительных веществ в 18 в. были открыты и исследованы соли серебра. В 1802 Т. Уэджвуд в Великобритании смог получить изображение на слое AgNO3 , но ещё не сумел его закрепить. Датой изобретения Ф. считают 1839, когда Л. Ж. М. Дагер сообщил Парижской академии о способе Ф., названном им в собственную честь дагеротипией, хотя авторство его было спорным и многие важнейшие особенности этого способа являются достижениями Ж. Н. Ньепса , разработанными им единолично или в сотрудничестве с Дагером. Почти одновременно с Дагером о др. способе Ф. – калотипии (от греч. kalós – красивый, превосходный и týpos – отпечаток) сообщил в Великобритании У. Г. Ф. Толбот (патент на этот способ выдан в 1841). Сходство обоих названных способов ограничивалось использованием Agl в качестве СЧС, различия же велики и принципиальны: в дагеротипии получалось сразу позитивное зеркально отражающее серебряное изображение, что упрощало процесс, но делало невозможным получение копий, а в калотипии изготовлялся негатив , с которого можно было делать любое число отпечатков. В этом отношении калотипия более близка к современной Ф., чем дагеротипия; кроме того, в первой из них, как и в современной Ф., проявление использовалось не только для того, чтобы сделать скрытое фотографическое изображение видимым для глаза, но и для того, чтобы его усилить.

  Из дальнейших открытий, принципиально важных для развития Ф., надо отметить прежде всего переход от камеры-обскуры со случайно выбранным объективом низкого качества к камере со специальным хорошо исправленным съёмочным объективом (его создал венгерский оптик И. Пецваль в 1840; о т. н. условии Пецваля см. ст. Кривизна поля ) и переход от мокрых СЧС, приготовляемых непосредственно перед съёмкой, к заранее приготовляемым сухим СЧС, способным длительно храниться в темноте без существенных изменений. В этом отношении решающую роль сыграли замена коллодионных (см. Коллодий ) СЧС желатиновыми (желатину в Ф. впервые широко использовал англичанин Р. Мэддокс, 1871), а также применение вместо чистого AgI др. галогенидов Ag, более удобных с практической точки зрения. Наиболее распространённый вид СЧС – сухие желатиновые слои с диспергированными в них микрокристаллами AgHal (Hal = Cl, Br, Cl + Br, Cl + I, Cl + Br + I, Br + I, причём содержание Agl ни в одном случае не превышает нескольких %). Именно такие СЧС стали массово выпускаться промышленностью с середины 1870-х гг. Первоначально их изготовляли на стеклянной подложке (пластинки), а затем также на бумажной и плёночной. Хотя массовый выпуск плёнок начался на полтора десятилетия позже, чем пластинок (после изобретения гибкой нитроцеллюлозной подложки американским изобретателем Г. Гудвином, 1887), этот вид материалов постепенно стал преобладающим, чему сильно способствовало создание малогабаритных плёночных камер, со временем вытеснивших громоздкие пластиночные камеры (за исключением специальных репродукционных). К 70-м гг. 20 в. около 90% всех выпускаемых AgHal-CЧС составляют плёнки, а на долю пластинок приходится менее 1%. В современном ассортименте фотографических материалов плёнки обычно являются негативными СЧС (кроме кинопозитивных и обращаемых – см. ниже), бумаги – позитивными (за исключением специальных копировальных), пластинки – только негативными (см. Бумага фотографическая , Пластинки фотографические , Плёнка кино- и фотографическая ).

  Важнейшую роль в развитии Ф. на AgHal-CЧС сыграло открытие оптической сенсибилизации (нем. учёный Г. Фогель, 1873), т. е. расширения спектральной области чувствительности СЧС путём введения в них красителей, поглощающих свет больших длин волн, чем AgHal [которые поглощают только в ультрафиолетовой (УФ) области и на коротковолновом участке видимой области, не дальше синей части]. Этим был преодолен крупный недостаток прежних СЧС. Уже в 1880-х гг. большинство выпускаемых СЧС стали ортохроматическими (см. Ортохроматические материалы ), чувствительными к жёлтому цвету, а с 1920-х гг. основное место среди массово выпускаемых СЧС заняли панхроматические материалы , чувствительные к оранжево-красной части спектра. Затем появились и AgHal-CЧС, чувствительные до длин волн 1,2–1,3 мкм, соответствующих смежному с видимой областью участку инфракрасной (ИК) области, однако не для любительской съёмки, а только для научно-технических целей (см. Инфрахроматические материалы ). Дальнейшее продвижение чувствительности СЧС в длинноволновую сторону невозможно, т.к. равновесное тепловое излучение окружающих тел сосредоточено как раз в ИК-области. Непрерывно действуя на сенсибилизируемые СЧС в течение всего времени между их изготовлением и использованием, оно вуалирует их до недопустимого уровня (см. Вуаль фотографическая ) уже в первые сутки или даже часы их хранения. Преодолеть это ограничение для любого вида Ф. на AgHal-CЧС принципиально невозможно.

  Напротив, в коротковолновую сторону чувствительность AgHal-CЧС не ограничена ничем. На AgHal-CЧС оказывают действие не только уже упоминавшиеся излучения видимой и близкой УФ-области, но и более коротковолновые, включая рентгеновское и гамма-излучения, а также ядерные частицы и электронные пучки. Благодаря этому AgHal-CЧС уже давно применяются для получения изображений в рентгеновских лучах и пучках электронов (см. Рентгенограмма , Радиография , Электронная микроскопия ); они стали также одним из распространённых средств для регистрации и измерения дозы ионизирующих излучений. Более того, некоторые из этих излучений, как и ряд элементарных частиц, были открыты именно с помощью AgHal-CЧС (см. Ядерная фотографическая эмульсия ).

79
{"b":"106336","o":1}