ЛитМир - Электронная Библиотека
Содержание  
A
A

  Лит.: Ченцов Ю. С., Поляков В. Ю., Ультраструктура клеточного ядра, М., 1974.

  И. И. Кикнадзе.

Хромопласты

Хромопла'сты (от хромо... и греч. plastós — вылепленный, оформленный), окрашенные внутриклеточные органеллы растительных клеток, тип пластид. Х. бывают шарообразными, веретеновидными, серповидными и неправильно-многоугольными. Окраска (оранжевая, жёлтая или буроватая) зависит в основном от присутствия в содержимом Х. пигментов каротиноидов . Х. обычно образуются из зелёных пластид — хлоропластов вследствие разрушения в них зелёных пигментов — хлорофиллов в процессе созревания плодов некоторых растений (рябины, ландыша, хурмы и др.), а также осеннего пожелтения листьев. При этом происходит распад белково-липидной мембранной системы хлоропластов. Белковый компонент оттекает из пластид, а липидный остаётся внутри. В нём растворяются каротиноиды и окрашивают пластиды в оранжевые и жёлтые тона. В некоторых случаях Х. возникают из бесцветных пластид — лейкопластов (например, в корнеплодах моркови).

  Лит. см. при ст. Пластиды .

Хромопротеиды

Хромопротеи'ды (хромо... и протеиды ), сложные белки, содержащие окрашенные простетические (небелковые) группы. Наиболее обширную группу Х. составляют железосодержащие белки гемопротеиды, к которым относятся цитохромы (переносчики электронов в процессах клеточного дыхания, при фотосинтезе, в системах гидроксилирования), некоторые ферменты (каталаза, пероксидаза), дыхательные пигменты (гемоглобин, миоглобин). У многих беспозвоночных животных функцию связывания кислорода выполняют гемоглобиноподобные белки эритрокруорины , а в крови некоторых многощетинковых червей — хлорокруорины . Вторую группу Х. составляют дыхательные пигменты крови беспозвоночных — гемеритрины (содержат негемовое железо) и гемоцианины (содержат медь). Третью группу Х. составляют ферменты, простетическая группа которых представлена рибофлавином, — флавопротеиды (переносчики электронов; играют важную роль в окислительно-восстановительных реакциях во всех животных клетках). К Х. относится и зрительный пурпур (родопсин ) сетчатки глаза, содержащий в качестве хромофорной группы 11-цис - ретиналь. Термин «Х.» выходит из употребления и всё чаще применяется главным образом по отношению к дыхательным пигментам крови.

Хромоскоп

Хромоско'п (от хромо... и ...скоп ), прибор для получения цветного изображения оптическим совмещением 2 пли 3 цветоделённых (см. Цветоделение ) чёрно-белых фотографических изображений, освещаемых через специально подобранные различно окрашенные светофильтры . Первые Х. были созданы в 1862 французским учёным Л. Дюко дю Ороном и использованы им в 1868—69 при получении первых цветных фотографических изображений. Х. предназначен для выделения и изучения деталей изображения, не присутствующих одновременно на всех совмещаемых изображениях и не выявляемых (вследствие сильной зависимости их отражения коэффициентов от длины волны света) непосредственной съёмкой в свете со сплошным спектром или в свете с неподходящим спектральным составом. Х. применяется в спектрозональной фотографии на черно-белых фотоплёнках, в частности в спектрозональной аэрофотосъёмке , биологической микрофотосъёмке (в т. ч. в ультрафиолетовой области спектра) и т.д.

Хромосомная теория наследственности

Хромосо'мная тео'рия насле'дственности, теория, согласно которой хромосомы , заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Х. т. н. возникла в начале 20 в. на основе клеточной теории и использования для изучения наследственных свойств организмов гибридологического анализа .

  В 1902 У. Сеттон в США, обративший внимание на параллелизм в поведении хромосом и менделевских т. н. «наследственных факторов», и Т. Бовери в Германии выдвинули хромосомную гипотезу наследственности, согласно которой менделевские наследственные факторы (название впоследствии генами) локализованы в хромосомах. Первые подтверждения этой гипотезы были получены при изучении генетического механизма определения пола у животных, когда было выяснено, что в основе этого механизма лежит распределение половых хромосом среди потомков. Дальнейшее обоснование Х. т. н. принадлежит американскому генетику Т. Х. Моргану , который заметил, что передача некоторых генов (например, гена, обусловливающего белоглазие у самок дрозофилы при скрещивании с красноглазыми самцами) связана с передачей половой Х-хромосомы, т. е. что наследуются признаки, сцепленные с полом (у человека известно несколько десятков таких признаков, в том числе некоторые наследственные дефекты — дальтонизм, гемофилия и др.).

  Доказательство Х. т. н. было получено в 1913 американским генетиком К. Бриджесом, открывшим нерасхождение хромосом в процессе мейоза у самок дрозофилы и отметившим, что нарушение в распределении половых хромосом сопровождается изменениями в наследовании признаков, сцепленных с полом.

  С развитием Х. т. н. было установлено, что гены, расположенные в одной хромосоме, составляют одну группу сцепления (см. Сцепление генов ) и должны наследоваться совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов (см. Кариотип ); признаки, зависящие от сцепленных генов, также наследуются совместно. Вследствие этого закон независимого комбинирования признаков (см. Менделя законы ) должен иметь ограниченное применение; независимо должны наследоваться признаки, гены которых расположены в разных (негомологичных) хромосомах. Явление неполного сцепления генов (когда наряду с родительскими сочетаниями признаков в потомстве от скрещиваний обнаруживаются и новые, рекомбинантные, их сочетания) было подробно исследовано Морганом и его сотрудниками (А. Г. Стёртевантом и др.) и послужило обоснованием линейного расположения генов в хромосомах. Морган предположил, что сцепленные гены гомологичных хромосом, находящиеся у родителей в сочетаниях

Большая Советская Энциклопедия (ХР) - i-images-155690440.png
 и
Большая Советская Энциклопедия (ХР) - i-images-154934889.png
, в мейозе у гетерозиготной формы ®
Большая Советская Энциклопедия (ХР) - i-images-199762164.png
 могут меняться местами, в результате чего наряду с гаметами АВ и ab образуются гаметы Ab и аВ. Подобные перекомбинации происходят благодаря разрывам гомологичных хромосом на участке между генами
Большая Советская Энциклопедия (ХР) - i-images-151878773.png
 и последующему соединению разорванных концов в новом сочетании: Реальность этого процесса, названного перекрестом хромосом, или кроссинговером , была доказана в 1933 нем, учёным К. Штерномв опытах с дрозофилой и американскими учёными Х. Крейтономи Б. Мак-Клинток — с кукурузой. Чем дальше друг от друга расположены сцепленные гены, тем больше вероятность кроссинговера между ними. Зависимость частоты кроссинговера от расстояний между сцепленными генами была использована для построения генетических карт хромосом . В 30-х гг. 20 в. Ф. Добржанский показал, что порядок размещения генов на генетических и цитологических картах хромосом совпадает.

  Согласно представлениям школы Моргана, гены являются дискретными и далее неделимыми носителями наследственной информации. Однако открытие в 1925 советскими учёными Г. А. Надсоном и Г. С. Филипповым, а в 1927 американским учёным Г. Мёллером влияния рентгеновских лучей на возникновение наследственных изменений (мутаций ) у дрозофилы, а также применение рентгеновских лучей для ускорения мутационного процесса у дрозофилы позволили советским учёным А. С. Серебровскому, Н. П. Дубинину и др. сформулировать в 1928—30 представления о делимости гена на более мелкие единицы, расположенные в линейной последовательности и способные к мутационным изменениям. В 1957 эти представления были доказаны работой американского учёного С. Бензера с бактериофагом Т4. Использование рентгеновских лучей для стимулирования хромосомных перестроек позволило Н. П. Дубинину и Б. Н. Сидорову обнаружить в 1934 эффект положения гена (открытый в 1925 Стёртевантом), т. е. зависимость проявления гена от места расположения его на хромосоме. Возникло представление о единстве дискретности и непрерывности в строении хромосомы.

22
{"b":"106365","o":1}