ЛитМир - Электронная Библиотека
Содержание  
A
A

Следует, однако, заметить, что крупные открытия в этой области были сделаны еще более полувека назад. Так, в 1926 г. стала известна природа звезд типа белых карликов. Первым объектом такого рода оказался спутник звезды Сириус. Наблюдения, осуществленные в 1912—1914 гг., показали, что этот слабосветящийся спутник, Сириус В, при массе, равной массе Солнца, по своим размерам сравним с Землей. Отсюда следовало, что плотность вещества Сириуса В чудовищно высока — она в миллион раз превышает плотность воды. Было высказано предположение, что это остатки сгоревших звезд, т. е. звезд, в которых уже прекратились термоядерные процессы. Эти слабосветящиеся тела, поддерживаемые в равновесии различными квантовыми эффектами, в частности так называемым давлением вырожденного электронного газа (это состояние вещества возникает при сверхвысоких плотностях, когда электроны уже не связаны с отдельными ядрами, а свободно движутся относительно них), медленно остывают. Теперь ученые знали не только, как рождаются и горят звезды, но и как они умирают. Всю сложность этих процессов первым понял Субраманьян Чандрасекар.

В 1930 г., окончив Президентский колледж в Мадрасе, Чандрасекар отправился на корабле в Англию, чтобы продолжить там свое образование. Во время длительного путешествия 20-летний индиец из Лахора произвел вычисления и, введя релятивистские представления в существовавшую тогда теорию белых карликов, показал, что существование последних возможно лишь при условии, что их масса не превышает определенного предела (предел Чандрасекара). В Кембридже он закончил свою работу, которая вышла в свет в 1931 г. В ней указывалось, что массивные звезды должны завершать свою жизнь в процессе катастрофического сжатия — коллапса.

Сегодня известно, что звезды массой, примерно в 1,5 раза превышающей массу Солнца, превращаются в конечном счете в нейтронные звезды или черные дыры. В те годы выводы молодого индийца вызвали недоверие астрономов. И только в начале 60-х годов идеи Чандрасекара получили более широкое распространение. Особенно веским аргументом в их поддержку явилось открытие пульсаров Энтони Хьюишем и его сотрудниками. Наблюдения с помощью самых совершенных современных астрономических инструментов позволили уточнить численное значение предела Чандрасекара. Ныне теоретические разработки, сделанные этим ученым, взяты астрофизиками на вооружение. В 1983 г. Чандрасекар получил Нобелевскую премию по физике за исследование строения и эволюции звезд. Вместе с ним был награжден и Уильям Фаулер за изучение ядерных реакций в звездах и создание теории образования химических элементов во Вселенной.

VI. ОПТИКА И ГОЛОГРАФИЯ

Оптика — один из старейших разделов физики, в котором исследуются процессы излучения света, его распространения в различных средах и взаимодействие света с веществом. Еще в древние времена многие известные философы интересовались оптическими явлениями и размышляли о них в своих сочинениях. Однако основы современной оптики были заложены лишь в XVII в. благодаря исследованиям И. Ньютона, Р. Гука, Ф. Гримальди и X. Гюйгенса.

Работы старых исследователей содержали немало рациональных элементов, но были недостаточно совершенны, и только в начале XIX в. оптика обрела более строгий, научный облик. Убедительными экспериментами Томас Юнг и Огюстен Жан Френель доказали волновую природу света. В своей знаменитой теории электромагнитного поля Максвелл выдвинул идею электромагнитной природы света и установил связь между оптическими и электромагнитными явлениями. К концу XIX в. в результате исследований процессов излучения и поглощения сложилось представление о двойственной природе света было обнаружено, что в одних случаях он ведет себя как поток частиц, а в других — как волна.

За последнее столетие ученые, используя свойства света, поставили немало экспериментов и создали приборы, которыми существенно обогатили различные области науки. Некоторые из ученых-оптиков за свои заслуги были удостоены Нобелевской премии. Первым из них был Альберт Абрахам Майкельсон. Будучи типичным представителем науки XIX в., он считал, что в физике уже почти все открыто и достичь новых результатов можно, только повысив точность экспериментальных измерений — «выше шестого десятичного знака».

Одним из важных вопросов в науке того времени была проблема так называемого эфира. Физики считали, что это неподвижная среда, заполняющая всю Вселенную, в которой свет распространяется так же, как звук в воздухе. Согласно существовавшим тогда теориям, эфир должен был непременно обнаружиться в некоторых явлениях, и поэтому для доказательства его существования ставились различные опыты. Так, при наличии эфира скорость света должна была зависеть от движения Земли относительно неподвижного эфира.

Постановка таких опытов требовала исключительно точной аппаратуры и большого искусства экспериментаторов. Обе эти предпосылки были налицо у Альберта Майкельсона. В 1881 г. он использовал изобретенный им интерферометр, чтобы решить вопрос об эфире. К своему величайшему удивлению, исследователи обнаружили, что скорость света оказывается одинаковой во всех направлениях[7]. Это означало крушение концепции эфира. Однако большинство физиков, не желая отказываться от укоренившихся теорий, предпочли отвергнуть результаты Майкельсона. Только Хендрик Антон Лоренц в Лейдене и независимо от него Фрэнсис Фицджеральд в Дублине попытались объяснить результаты наблюдений Майкельсона, выдвинув гипотезу (1892 г.), что при движении со скоростью, близкой к скорости света, размеры тела в направлении движения сокращаются. В 1905 г. Эйнштейн доказал, что сокращение Лоренца — Фицджеральда действительно имеет место. Но идея, предложенная этими двумя учеными с единственной целью — «спасти эфир», приобрела в теории относительности другой смысл.

Основой для этих теоретических достижений явились исключительно точные измерения Альберта Майкельсона. В 1907 г. он был удостоен Нобелевской премии за создание прецизионных оптических инструментов и выполненные с их помощью исследования в спектроскопии и метрологии.

В 30-е годы XIX в. была открыта фотография. Всего за несколько десятилетий она из сложного лабораторного процесса, доступного немногим, превратилась в увлечение миллионов людей. Уже в конце XIX в. крупные фирмы производили столь совершенные фотоаппараты, что фотографу-любителю оставалось просто нажимать спуск. Лишь один вопрос оставался неразрешимым: изображения были только черно-белыми. Единственный способ получения цветных снимков состоял в том, чтобы делать негативы трех основных цветов и накладывать их друг на друга. Но это довольно сложный и трудоемкий способ. Поэтому новость о том, что французский физик Габриель Липман изобрел в 1891 г. метод цветной фотографии, вызвала большой интерес.

Липман вставлял фотопластинку в специальную кассету со ртутью, которая создавала абсолютно ровную зеркальную поверхность. Свет, проходя через эмульсию, отражается от зеркала и возвращается обратно. При интерференции между падающим и отраженным лучами образуются стоячие волны, в результате чего кристаллы серебра в проявленной эмульсии располагаются слоями. При рассмотрении такого негатива свет отражается от него таким образом, что изображение видно в настоящих цветах.

Метод Липмана нашел применение в спектроскопии, однако для практической фотографии он оказался неудобным. Трудности вызывали кассета с ртутью и очень большое время экспозиции (1 мин). Сама же по себе идея очень интересна, и некоторые специалисты даже считают, что Габриель Липман был близок к открытию голографии. За свои оригинальные работы французский ученый получил в 1908 г. Нобелевскую премию по физике.

В 1872 г. немецкий физик-оптик Эрнст Карл Аббе разработал теорию образования изображений в микроскопе. Это явилось вершиной развития данного оптического инструмента, известного еще с начала XVII в. Два столетия многие ученые-экспериментаторы и мастера-оптики создавали разнообразные конструкции этого прибора, пока наконец Аббе, основываясь на законах волновой оптики, не рассчитал теоретически пределы возможностей оптического микроскопа. В 1888 г. он стал сотрудником фирмы Карла Цейса в Йене — и с тех пор началось производство высококачественных оптических микроскопов современного типа.

вернуться

7

Этот результат был получен в 1887 г. в экспериментах, проведенных Майкельсоном совместно с Э. Морли. — Прим. ред.

29
{"b":"204021","o":1}