ЛитМир - Электронная Библиотека
ЛитМир: бестселлеры месяца
100 способов изменить жизнь. Часть 2
Гении и аутсайдеры: Почему одним все, а другим ничего?
Возвращение атлантов
Битна, под небом Сеула
Дом мистера Кристи
Королевская кровь. Горький пепел
Дети-одуванчики и дети-орхидеи
Зулейха открывает глаза
Муля, не нервируй меня!
Содержание  
A
A
Свет в море - i_047.jpg

Рис. 40. Оптическая схема вариоспектрометрического измерителя подводной облученности (ВАРИПО)

1 — иллюминатор; 2 — приемная щель; 3 — система линз; 4 — призма прямого зрения; 5 — объектив; 6 — нормирующая диафрагма; 7 — линза; 8 — ФЭУ

«Секрет» прибора заключается именно в нормирующей диафрагме. Ее функция состоит в том, чтобы «исправить» спектральный состав света, приведя его в своеобразное соответствие со спектральной чувствительностью фотоэлектронного умножителя — приемника излучения в приборе ВАРИПО.

На рис. (41, 1) видно, что фотокатод ФЭУ по-разному реагирует на излучение различных длин волн, т. е. он селективен. Если на пути между ФЭУ и светом, разложенным в спектр, поставить фигурную щель (диафрагму), вырезанную таким образом, как указано на рис. 41, 2), то чувствительность ФЗУ будет «исправлена» и примет вид кривой 3. Другими словами, фигурная нормирующая диафрагма задержит часть лучей, к которым «излишне» чувствителен ФЭУ, и в результате будет получен неселективный приемник излучения в определенном участке спектра, к тому же совершенно нечувствительный к излучению за пределами этого участка.

Свет в море - i_048.jpg

Рис. 41. Спектральная чувствительность ФЭУ до коррекции 1 фигурной диафрагмой 2 и ее вид после коррекции 3

Свет в море - i_049.jpg

Рис. 42. Прибор для измерения углового распределения естественного излучения в море

Прибор ВАРИПО устроен так, что он реагирует на свет в диапазоне от 380 до 700 нм. Это так называемая область фотосинтетически активной радиации. ВАРИПО гораздо чувствительнее подводного пиранометра, и. несмотря на большие потери световой энергии при прохождении света через сложную оптическую систему, с его помощью можно вести измерения на глубинах 100–150 м.

Измерения освещенности хотя и дают интересные сведения об изменении света с глубиной, но далеко не исчерпывают всего, что нам необходимо знать об излучении, распространяющемся в толще моря.

Наиболее полную информацию можно получить из измерений тела яркости, т. е. углового распределения интенсивности излучения по различным направлениям. Такие измерения выполнил американский ученый Дж. Тайлер на озере Панд-Орей. Яркомер погружался под воду до глубины 66 м и ориентировался в пространстве гироскопическим устройством. Угол зрения приемника излучения был около 7°.

Обычно угловое распределение интенсивности излучения измеряют лишь в двух перпендикулярных плоскостях. Внешний вид прибора для подобных измерений показан на рис. 42. Его использовал японский гидрооптик профессор Т. Сасаки.

На рисунке видны два приемника излучения, один из которых вращается в вертикальной 1, а другой — в горизонтальной 2 плоскостях. Особенность измерителя состоит в том, что его приемниками служат ФЭУ, снабженные специальной оптической системой, позволяющей ограничить угол зрения приемника всего лишь 4°. Зафиксировав излучение в нескольких точках в вертикальной и горизонтальной плоскостях на разных глубинах, можно построить диаграммы углового распределения света.

Эти измерения, исключительно трудоемкие, требуют сложной аппаратуры и потому до сего времени носят экспериментальный характер.

В Советском Союзе их проводили М. Н. Кайгородов, Г. Г. Неуймин и А. К. Карелин.

Почему разные моря имеют разный цвет

Чем определяется цвет моря

«Летая вокруг земного шара, — рассказывает советский космонавт Герман Титов, — я воочию убедился, что на поверхности нашей планеты воды больше, чем суши. Великолепное зрелище являли собой длинные полосы волн Тихого и Атлантического океанов, бегущих к далеким берегам…

Океаны и моря, так же как и материки, отличаются друг от друга своим цветом. Богатая палитра, как у русского живописца-мариниста Ивана Айвазовского, — от темно-синего индиго Индийского океана до салатной зелени Карибского моря и Мексиканского залива»[23].

Цвет моря с давних времен привлекал внимание людей. Поэты воспевали изменчивость окраски морской поверхности, а ученые искали причины, ее объясняющие. В наше время прозрачность и цвет моря перестали быть лишь объектами поэтических восторгов и любознательности ученых. В XX в. эти факторы приобрели важное военное значение. Об этом еще в 1939 г. писал английский журнал «United Services Review»: «Все главные державы в отношении подводного флота применяют окраску, имеющую целью укрыться от воздушных сил противника или, по крайней мере, затруднить их деятельность. Наши собственные подводные лодки окрашиваются в различные цвета в зависимости от морей, в которых они оперируют. Нами применяются серо-зеленые цвета для Атлантического океана, синие — для Средиземного моря, черные — для Красного моря и некоторых других вод. Французские подлодки в своих водах — либо светлосерые, либо сине-зеленые, в то время как голландские подлодки для своих вод — темно-зеленые, с черным — для тех, которые базируются в Ост-Индии. Подводные лодки в Японии окрашиваются почти все в черные цвета».

О факторах, определяющих видимость подводных объектов, мы будем подробно говорить в следующей главе, а сейчас попробуем разобраться, чем же объясняется видимый цвет моря и почему разные моря имеют разный цвет.

Как будто в этом нет ничего удивительного, ведь известно, что воды морей и океанов различаются своими оптическими свойствами. Действительно, заполняя исследуемой водой трубку метровой длины с прозрачными торцами, даже визуально на просвет можно отличить, например, воду Индийского океана, имеющую голубоватую окраску, от воды Северного моря, окраска которой представляется зеленой. Темно-коричневую окраску болотной воды невозможно спутать с желто-зеленым цветом балтийской.

Но каждый, кто хотя бы раз побывал на море, не мог не заметить, что его воды даже в течение дня неоднократно изменяют свой цвет. Подул легкий ветерок, появилась рябь на морской поверхности — и сразу же изменилась ее окраска, сделавшись гораздо более интенсивной по цвету; покрылось небо свинцово-серыми тучами — и само море стало серым и угрюмым.

Даже в один и тот же момент в одном и том же месте окраска моря кажется неодинаковой, если смотреть вниз прямо перед собой (например, с борта шлюпки) или перевести взгляд дальше, к линии горизонта.

Что же представляет собой свет, попадающий в глаз человека, созерцающего морскую поверхность? От чего зависит его спектральный состав?

Легко сообразить, что в этот световой поток прежде всего входит свет, отраженный поверхностью моря. Именно он определяет непостоянство окраски морской поверхности и ее изменчивость в зависимости от погоды.

Коэффициент отражения морской поверхности практически не зависит от длины волны падающего света. Спектральный состав отраженного излучения не отличается от спектрального состава падающего: в ясную, безоблачную погоду поверхность моря отражает синеву небосвода; а когда небо покрыто тучами, в море, как в зеркале, отражается их свинцово-серая, хмурая окраска.

Является ли, однако, этот свет единственным фактором, определяющим цвет моря? Очевидно, нет. Ведь если бы это было так, то все моря имели бы одинаковую окраску и мы бы не могли говорить о «лазурных водах» Средиземноморья или о водах Желтого моря, цвет которых полностью оправдывает его название. Учеными установлено, что каждое море имеет свой собственный цвет, хотя у многих морей и океанов эти цвета весьма схожи. «Собственный» цвет моря связан со световым потоком, выходящим из его толщи.

Уже говорилось о том, что благодаря процессам многократного рассеяния свет под водой распространяется по всевозможным направлениям, в том числе и вверх — к поверхности моря. Если опустить под воду фотометр, у которого поверхность чувствительного элемента обращена вниз, то с его помощью мы сможем определить величину этого восходящего светового потока.

вернуться

23

Г. Титов. 700 000 километров в космосе. М., «Правда», 1961.

19
{"b":"238951","o":1}