ЛитМир - Электронная Библиотека
A
A

Прибавление

Вышеизложенный опыт содержит так много умозрительных заключений, что мне казалось нежелательным включать в него что-либо еще более умозрительное. Поэтому-то я счел за лучшее поместить отдельно некоторые взгляды относительно генезиса так называемых элементов во время сгущения туманных масс и относительно сопровождающих его физических явлений. Вместе с тем мне казалось лучшим выделить из опыта некоторые более спорные заключения, прежде в нем находившиеся, для того чтобы излишне не запутывать его общие выводы. Эти новые части вместе с некоторыми прежними, которые здесь являются в более или менее измененном виде, я прилагаю в ряде примечаний.

ПримечаниеI. В пользу того мнения, что так называемые элементы суть соединения, существуют как частные, так и общие основания. Между частными основаниями можно назвать параллелизм между аллотропией и изомерией, многочисленные линии в спектре каждого элемента и периодический закон Ньюлэндза и Менделеева. Из более общих оснований, которые в отличие от этих химических или химико-физических причин можно назвать космическими, главнейшими можно считать следующие.

Общий закон эволюции, если он и не ведет к прямому заключению, что так называемые элементы суть соединения, тем не менее дает a priori основание предполагать, что они таковы. Материя, составляющая Солнечную систему, развиваясь физически из относительно однородного состояния, какое она представляла, будучи туманною массою, в относительно разнородное состояние, какое представляют Солнце, планеты и спутники, в то же время развивалась и химически из относительно однородного состояния, в котором она состояла из одного или немногих типов материи, в относительно разнородное состояние, в котором она состоит из многих типов материи, чрезвычайно различных по своим свойствам. Этот вывод из закона, который, как нам теперь известно, распространяется на весь мир, имел бы большое значение, если бы даже его не подтверждала индукция, но обзор групп химических элементов вообще дает нам несколько категорий индуктивных доказательств, поддерживающих этот вывод.

Первая категория доказательства та, что с тех пор, как охлаждение Земли достигло значительной степени, составные части ее коры становятся все более и более разнородными. Когда так называемые элементы, первоначально существовавшие в свободном состоянии, образовали окиси, кислоты и другие двойные соединения, то общее число различных веществ чрезвычайно увеличилось получились новые вещества более сложные, чем прежние, и их свойства стали разнообразнее, т е скопления сделались более разнородными по составным своим частям, по составу каждой части и по числу отличительных химических признаков Когда в позднейший период образовались соли и другие соединения такой же степени сложности, опять явилась большая разнородность как в соединениях, так и в их частях А когда, еще позже, стало возможно существование веществ, причисляемых к органическим, то подобными же путями появилось еще большее многообразие Итак, если химическая эволюция, насколько мы ее можем проследить, направлялась от однородного состояния к разнородному, то не можем ли мы предположить, по справедливости, что так было с самого начала?

Если мы вернемся назад от недавних периодов истории Земли и найдем, что линии химической эволюции постоянно сходятся, пока они не приведут нас к телам, которые мы не можем разложить, то не вправе ли мы предположить, что если бы мы могли проследить эти линии еще дальше в прошлое, то дошли бы до разнородности, все еще уменьшающейся по числу и природе веществ, пока не достигли бы чего-нибудь похожего на однородность.

Подобный же вывод можно получить при рассмотрении сродства и устойчивости химических соединений. Начиная со сложных азотистых соединений, из которых образовались живые существа и которые в истории Земли суть позднейшие и вместе с тем наиболее разнородные, мы видим, что как сродство, так и устойчивость в них чрезвычайно малы. Их частицы не входят в химическое соединение с частицами других веществ так, чтобы образовать еще более сложные соединения, и составные их части при обыкновенных условиях часто не могут держаться вместе. Ступенью ниже по составу стоит громадное количество кислородно-водородно-углеродистых соединений, большое число которых выказывает положительное стремление к соединению и при обыкновенной температуре устойчиво. Переходя к неорганической группе, мы находим в солях и других соединениях большое сродство между составными их частями и соединения, которые в большинстве случаев не легко разложимы. И затем, дойдя до окисей, кислот и других двойных соединений, мы найдем, что во многих случаях элементы, из которых они состоят, будучи приближены друг к другу, при благоприятных условиях соединяются с большою энергией и что многие из их соединений не разлагаются посредством одного жара. Итак, если, возвращаясь назад от новейших и наиболее сложных веществ к древнейшим и простейшим веществам, мы увидим в общем большое увеличение в сродстве и устойчивости, то из этого следует, что если тот же закон применим и к самим простым веществам, какие нам известны, то можно предположить, что составные части этих веществ, если они сложные, соединены вследствие гораздо большего сродства, чем какое нам известно, и что степень устойчивости их далеко превосходит ту устойчивость, с какой знакомит нас химия. Вследствие этого представляется возможным предположить существование класса веществ неразложимых и потому кажущихся простыми. Вывод таков, что эти вещества образовались в ранние периоды охлаждения Земли при условиях такого жара и такого давления, степень которых мы в настоящее время не можем ни с чем сравнить.

Еще подтверждение того предположения, что так называемые элементы суть соединения, получается от сравнения их как агрегатов по отношению к их повышающемуся частичному весу с агрегатом тел, заведомо сложных и также рассматриваемых по отношению к их повышающемуся частичному весу. Сопоставьте двойные соединения, как класс, с четвертными соединениями, как классом. Частицы, образующие окиси (щелочные, кислотные или нейтральные) хлористых, сернистых и т. п. соединений, сравнительно малы и, соединяясь с большой энергией, образуют устойчивые соединения. С другой стороны, частицы, образующие азотистые тела, сравнительно громадны и вместе с тем химически недеятельны те соединения, в которые входят их более простые типы, не могут сопротивляться разлагающим силам. Подобное же различие замечается при взаимном сопоставлении так называемых элементов. Те из них, у которых атомный вес сравнительно низок, - кислород, водород, калий, натрий и т. п. выказывают большую готовность соединяться между собой, и действительно, многим из них при обыкновенных условиях нельзя помешать соединиться. Наоборот, вещества большого атомного веса - "благородные металлы" - при обыкновенных условиях индифферентны к другим веществам, и те соединения, которые они образуют, при специально к тому приспособленных условиях, легко разрушаются. Так как в телах, заведомо сложных, увеличивающийся частичный вес связан с появлением известных свойств, и в телах, которые мы причисляем к простым, увеличивающийся частичный вес связан с появлением подобных же свойств, то мы можем считать это добавочным указанием на сложную природу элементов.

Следует прибавить еще один разряд явлений, соответствующих вышеупомянутым и специально нас касающихся. Рассматривая химические явления вообще, мы видим, что развитие теплоты обыкновенно уменьшается по мере того, как увеличивается степень сложности и вытекающая отсюда массивность частиц. Во-первых, мы знаем тот факт, что во время образования простых соединений развивается гораздо больше теплоты, чем во время образования соединений сложных. Элементы, соединяясь друг с другом, обыкновенно выделяют много теплоты, между тем как тогда, когда образовавшиеся из них соединения дают новые соединения, выделяется лишь немного теплоты, и, как показывают опыты проф. Эндрюса, теплота, выделяемая при соединении кислот с основаниями, бывает обыкновенно меньше в тех случаях, когда частичный вес основания больше. Затем, во-вторых, мы видим, что при соединении между самими элементами, там, где их атомный вес невелик, получается гораздо больше теплоты, чем при соединении элементов, имеющих больший атомный вес. Если мы продолжим наше предположение, что так называемые элементы суть соединения, и если по этому закону, если он и не всеобщий, считать неразложимые вещества за разложимые, то получаются два заключения. Во-первых, те первичные и вторичные соединения, посредством которых получились элементы, должны были сопровождаться выделением теплоты, превышающим все известные нам степени. Во-вторых, между самими этими первичными и вторичными соединениями те, посредством которых образовались элементы с малыми частицами, дали более интенсивную теплоту, чем те, посредством которых образовались элементы с более крупными частицами, так как элементы, образовавшиеся из окончательных соединений, должны по необходимости быть позднейшего происхождения и в то же время должны быть менее устойчивы, чем элементы более раннего происхождения.

37
{"b":"41364","o":1}