ЛитМир - Электронная Библиотека

На основе этих моделей возникли другие модели искусственных нейронных сетей, например сети обратного распространения, с помощью которых можно более эффективно распознавать буквы, числа, фотографии и так далее. Сегодня как простые сети, так и сети обратного распространения широко используются, например, при классификации электронной почты для удаления нежелательных писем — спама, для распознавания речи и изображений, анализа электроэнцефалограммы (ЭЭГ) человека, распознавания сердечного ритма плода и отделения его от материнского — этот список можно продолжать очень долго. В течение нескольких лет искусственные нейронные сети применяются в интегрированных цепях — так называемых нейрочипах, которые вставляются в компьютер или другое оборудование с целью разработки приложений или интеллектуальных систем для решения самых разных проблем, в том числе и указанных выше. Потребовалось более полувека для того, чтобы идеи Тьюринга об умных машинах воплотились в жизнь.

ДНК И ЖИЗНЬ В КОМПЬЮТЕРЕ

В конце жизни Алан Тьюринг ставил передовые эксперименты по симуляции морфогенеза, то есть биологических процессов, протекающих при развитии организма. Для этой цели ученый использовал компьютеры Манчестерского университета. Тьюринг утверждал, что некоторые химические вещества (морфогены), физико-химические процессы (допустим, диффузия, то есть движение таких молекул, как морфогены), а также другие феномены, например активация или ингибиция (подавление), ответственны за процессы клеточной дифференциации, состоящей из этапов, которые проходит клетка от эмбриона до взрослого индивидуума. Центральной идеей была мысль о том, что положения, которые занимают недифференцированные, или неспециализированные клетки эмбриона, содержат записанную в морфогенах информацию, согласно которой морфогены контролируют развитие эмбриона. Этот процесс приводит к специализации клеток и превращению зародыша во взрослую особь. Так еще раз проявилась гениальность Тьюринга, предсказавшего существование морфогенов задолго до того, как они были открыты.

ЭМУЛЯЦИЯ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

В настоящий момент модели искусственных нейронных сетей имеют широкое применение. В основном нейронные сети используют одну организационную модель: нейроны организованы слоями (вход, выход, возможны скрытые нейроны), их соединение осуществляется согласно определенному биологическому критерию — нейроны одного слоя соединяются с нейронами другого слоя. Пользователь устанавливает для сети пороги активации, функцию активации или передачи, другие параметры. И все же, несмотря на схожую организацию всех искусственных нейронных сетей, имеется один отличительный элемент — алгоритм обучения. В парадигме искусственного разума обучение — процесс, в результате которого нейронная сеть изменяет ответ, или выход, при определенном входе. Это изменение является результатом настройки одного или нескольких соединений и их веса. Существует множество методов настройки веса соединений сети, с помощью которых сеть обучается распознавать образцы (буквы, числа, фотографии и так далее). В других случаях сеть просто запоминает образец без обучения, то есть настройка веса соединений не требуется. Ни модель Маккалока — Питтса, ни модель Тьюринга не были способны к обучению, так как для этого потребовалась разработка специального алгоритма. Обучаемые модели могут эмулировать операторы И, ИЛИ и другие, то есть они ближе к машине Тьюринга, чем к биологической нейронной сети. Одна из лучших программ для изучения искусственных нейронных сетей — Штутгартский симулятор нейронной сети (SNNS).

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - _54.jpg

Штутгартский симулятор нейронной сети (SNNS).

В 1960-е годы биолог Льюис Вольперт (р. 1929) усовершенствовал понятие морфогена, введенное Тьюрингом, после открытия первого белка, имеющего такие характеристики, у уксусной мушки Drosophila melanogaster. Морфогенами могут быть различные химические вещества, от белков до витаминов, в их функции входит контроль генов — наследственных единиц. Однако учитывая, что ген — фрагмент ДНК, его действие не было понятно до открытия структуры ДНК Джеймсом Уотсоном (р. 1928) и Фрэнсисом Криком (1916-2004) в 1953 году, за год до смерти Тьюринга. Сегодня модель морфогенеза Тьюринга, с помощью которой он объяснил формирование полосок на шкуре зебр, применена к другим животным и доказана экспериментально. Ее высоко оценили такие специалисты по теоретической биологии, как Льюис Вольперт и Ганс Мейнхардт (р. 1938). Однако некоторые исследователи утверждают, что механизм морфогенеза отличается от представленного Тьюрингом. На самом деле клетки эмбриона следуют определенному глобальному плану и специализируются вследствие серии трансформаций, которые можно объяснить их механическими свойствами.

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - _55.jpg

Памятник Алану Тьюрингу в Садах Витворта в Манчестере. Яблоко в руке напоминает о способе самоубийства.

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - _56.jpg

Марка в память об Алане Тьюринге, выпущенная в 2012 году.

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - _57.jpg

Памятное изображение в честь столетия со дня рождения Алана Тьюринга, которое отмечалось в 2012 году.

ВИЗУАЛИЗАЦИЯ ДНК В JMOL

Jmol - Java-программа визуализации, с помощью которой можно увидеть трехмерные структуры химических соединений, кристаллов, материалов и биомолекул. Один из самых интересных примеров — молекула ДНК, ее можно поворачивать, увеличивать или уменьшать, менять тип изображения и так далее. ДНК — полимер, имеющий структуру двойной спирали из повторяющихся блоков, нуклеотидов — аденина (А), цитозина (С), гуанина (G) и тимина (Т). Нуклеотиды одной спирали составляют пары с нуклеотидами другой спирали: А с Т, G с С, определяя на каждой спирали последовательности — гены, в которых хранится биологическая информация, передаваемая из поколения в поколение.

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - _58.jpg

Визуализатор Java Jmol.

Они могут деформироваться, растягиваться и даже превращаться в нейронные, мускульные или костные клетки. Этот комплекс трансформаций объясняют с помощью математического моделирования механических феноменов, наблюдаемых в клетках. Данную идею, так же как и модель Тьюринга, использующую дифференциальные уравнения, поддержали ученые Конрад Уоддингтон (1905-1975), Мюррей Гелл-Ман (р. 1929) и Брайн Гудвин (1931-2009).

После открытия ДНК и разработки алгоритма для изучения генетической информации с помощью компьютера появилась новая дисциплина — биоинформатика. Компьютер был и остается важным инструментом для изучения ДНК, но также с его помощью разработан новый класс компьютеров, изучение которых привело к выделению вычислительных систему использующих ДНК. В 1994 году Леонард Адлеман (р. 1945), осуществив ряд опытов с ДНК, решил задачу о гамильтоновом графе, состоящую в обнаружении кратчайшего маршрута, проходящего по каждому городу один раз. Количество городов является строго определенным — Адлеман рассмотрел случай с семью городами. Эти опыты открыли путь другим исследователям, среди них был и Эхуд Шапиро (р. 1955), построивший машину Тьюринга из молекулы ДНК.

ПРИЗНАНИЕ НАСЛЕДИЯ

В 1999 году журнал Time назвал Алана Тьюринга в числе 20 наиболее влиятельных личностей XX столетия. С 1966 года Ассоциация вычислительной техники, более известная под сокращением ACM, ежегодно вручает премию Тьюринга — награду по информатике, эквивалентную Нобелевской премии. В 2009 году Гордон Браун, премьер-министр Британии в то время, принес официальные извинения за несправедливое осуждение Алана Тьюринга. Однако в феврале 2012 посмертное прошение о помиловании, представленное палате лордов и собравшее 23 тысячи подписей, было отклонено.

25
{"b":"558852","o":1}