ЛитМир - Электронная Библиотека
Содержание  
A
A

«А»: А я и не знал… Лучше послушай. В упоминаемой уже «Спидоле», контурные катушки (гетеродинные и диапазонные) коммутировались посредством посеребренных внешних контактов. И пока приемник был новый, все было в порядке. Но по мере эксплуатации, серебро на контактах покрывалось тончайшей пленкой окисла, чернело.

Переходное контактное сопротивление цепей при этом возрастало. Кроме того, становилось непостоянным во времени. Сигнал, реальная величина которого составляла десятки микровольт, часто был не в состоянии преодолеть такой контакт.

«Н»: Но ведь это означает полную потерю чувствительности, разве нет?

«А»: Во всяком случае, значительное ее ухудшение. И резкое возрастание уровня треска и помех.

«Н»: Но я видел и герметизированные барабанные переключатели?

«А»: Совершенно верно, таковые имеются. Применяя их, от вышеназванных неприятностей можно избавиться. Но далеко не от всех. Поскольку барабанный переключатель (или даже клавишный) — это конструкционный узел, расположение которого не терпит произвола. Он должен размещаться так, чтобы оператору, работающему с приемником, было удобно пользоваться переключателем диапазонов.

«Н»: Иначе говоря, должен быть расположен ФУНКЦИОНАЛЬНО?

«А»: Тебе удалось ухватить всю философскую глубину этой проблемы! А теперь прикинь, что входные высокочастотные цепи должны быть расположены так, чтобы находиться как можно ДАЛЬШЕ от рук оператора. Так наводки меньше. Но в этом случае, чтобы дотянуть сигнальный провод до переключателя и вернуть назад, приходится значительно увеличивать длину проводов входных и гетеродинных цепей. При этом резко падает их добротность, значительно возрастает уровень помех и наводок, затрудняется настройка цепей.

«Н» Ну и какой же ты можешь предложить выход из всего этого?

«А»: Только один — осуществлять высококачественную ВЧ-коммутацию на месте. Вот почему в схеме приемника и применены для этого специальные герконовые реле. Это очень качественный и надежный радиотехнический компонент. Итак, поскольку ответ на свой вопрос ты теперь знаешь, пошли дальше. Полосовой фильтр не только формирует 3-х мегагерцовую полосу пропускания, но еще и усиливает входной сигнал. Поэтому, приняв уровень сигнала на его выходе, равным 150 микровольт, мы не слишком погрешим против истины.

«Н»: Далее у нас идет широкополосный усилитель А1. Но я не понимаю его принципиальную схему. Не встречал такой.

«А»: Тебя, очевидно, смущает наличие трансформатора Тр1? Действительно, трансформатором этот элемент можно назвать с большой долей условности. В современной схемотехнике он известен больше под названием ШПТЛ — широкополосная трансформаторная линия. Должен тебе заметить, что само построение каскада УВЧ, в коллекторную цепь которого включен этот ШПТЛ, обладает рядом замечательных свойств.

«Н»: Ну и что же это за свойства, которых, как я понял, нет у привычных взору радиолюбителей каскадов?

«А»: Прежде всего, УВЧ на основе ШПТЛ является высоко линейным. Ты еще оценишь, насколько это важно для построения высококачественного приемного устройства. И означает, что даже при достаточно большой амплитуде сигнала ВЧ на входе, выходной сигнал не содержите себе гармоник.

Иными словами, синусоидальный характер выходного сигнала гарантируется.

«Н»: И это все?

«А»: Вовсе нет! Высокая линейность сохраняется в широкой полосе частот. Ну вот, для примера, подобный усилитель может без всякого завала АЧХ работать с сигналами от сотен килогерц до многих десятков мегагерц!

«Н»: А что это за хитрая цепь, собранная, как я понимаю, тоже на ШПТЛ. А именно, Тр2 и Тр3? А также на странно включенных диодах VD5—VD8?

«А»: Вот именно так, дорогой Незнайкин, выглядит смеситель. Это, давай напомню, нелинейное устройство, преобразующее частоту входного сигнала в некоторую иную частоту. При этом «всадник», то есть интересующий нас низкочастотный МОДУЛИРУЮЩИЙ сигнал, никаких искажений претерпевать не должен.

«Н»: Можно ли это уподобить тому, что «всадник» (он же низкочастотный сигнал) просто «меняет коня»?

«А»: Хорошая аналогия. Но присмотрись, на этот смеситель (преобразователь частоты), поступает также и сигнал ГПД — генератора плавного диапазона. В результате перемешивания сигналов, соответственно, имеющих значения входной и гетеродинной частот, получается их разностная частота.

То есть первая промежуточная — ПЧ1. Со вторичной обмотки ШПТЛ Тр2 сигнал ПЧ1, равный 5,5 МГц, через конденсатор С6 подается на вход резонансного усилителя, собранного на транзисторе VT2 и включенного по схеме с общим затвором. С его выхода, через конденсатор С9 он подается на вход КАСКОДНОГО усилителя на транзисторах VT3 и VT4.

«Н»: А почему нельзя было обойтись каскадом попроще?

«А»: Потому что КАСКОДНЫЙ усилитель обладает очевидными преимуществами. Во-первых, его входной ИМПЕДАНС (т. е. комплексное высокочастотное сопротивление, учитывающее как активную, так и реактивную проводимости), достаточно велик.

«Н»: Достаточно для чего?..

«А»: Ну хотя бы для того, чтобы не шунтировать резонансный контур С7—L9, настроенный, как ты, безусловно, догадался, на ПЧ1, т. е. 5,5 МГц.

Этот каскад хорош и тем, что не склонен к самовозбуждению. То есть от него можно добиться высокого коэффициента усиления по напряжению. Наконец, такой каскад отличается легкостью в настройке.

«Н»: Объясни пожалуйста, что ты имеешь в виду?

«А»: Охотно. Настраивая узел, содержащий в себе несколько резонансных контуров, обычно сталкиваются с явлением, когда «все зависит от всего». Любой элемент, таким образом, влияет на формирование АЧХ. Причем на ВСЮ, хотя на различные ее участки в различной степени! Но в КАСКОДНОЙ схеме это влияние, практически, ликвидируется. Вот почему такие усилители являются наиболее предпочтительными для построения на их основе резонансных высокочастотных усилителей.

«Н»: Я так понимаю, что УПЧ смело можно зачислять по высокочастотному ведомству?

«А»: И без угрызений совести! Ну, а что касается величины сигнала, то на выходе УВЧ полагаем его амплитуду достигшей 1,2 милливольт. Первый смеситель, осуществив «пересадку» сигнала с высокой на первую ПЧ, понизил его уровень до 400 микровольт.

«Н»: Зачем?…

«А»: Ты хочешь знать, зачем? Да просто потому, что коэффициент передачи сигнала диодных смесителей меньше единицы. Но зато у них масса других, очень полезных свойств. Которые с лихвой компенсируют ослабление ими сигнала. Например, исключительно малый коэффициент искажений. Высокая устойчивость к мощным внеполосным помехам, большой динамический диапазон, малые шумы.

Так что ты можешь с легким сердцем остановиться именно на этом типе смесителей. Ну и ведь, недавно рассмотренный, КАСКОДНЫЙ усилитель первой ПЧ тоже свое дело делает. Так что можешь считать, что на вход ВТОРОГО смесителя, собранного на ШПТЛ Тр4 и Тр5, а также диодах VD9—VD12, поступает сигнал с амплитудой около 20 милливольт.

«Н»: Снова сделаем поправку на особенности кольцевых смесителей и найдем, что на исток транзистора VT5 через конденсатор С18 поступает сигнал второй ПЧ, имеющий амплитуду около 7 милливольт. А вот дальше я не могу понять. Что это за узел?

«А»: Ты имеешь в виду участок принципиальной электрической схемы приемника, выполненной на транзисторах Т7, Т7 и резисторах R20 и R22?

«Н»: Ну конечно! Но послушай, уважаемый Аматор! Не вы ли со Спецом так настойчиво утверждали, что любой усилительный прибор, неважно, электронная лампа или транзистор, для того, чтобы проявить свои замечательные свойства, давшие так много для прогресса человечества, нуждается (я имею здесь в виду, конечно же, прибор) в обязательной подаче на его электроды различных уровней ПОСТОЯННОГО НАПРЯЖЕНИЯ?

«А»: Иными словами, что электроника немыслима без питающих напряжений? Расслабься, Незнайкин. И, поверь моему слову, не стоит бежать к окулисту по поводу того, что ты не видишь, как подается напряжение на транзисторы VT6 и VT7. Ты не видишь именно того, чего здесь и нет!

41
{"b":"583087","o":1}