ЛитМир - Электронная Библиотека
Содержание  
A
A
КВ-приемник мирового уровня? Это очень просто! - _124.jpg

«Н»: А в качестве регулирующего резистора ты и предлагаешь взять «полевик»?

«А»: Ну естественно!

«С»: Поздравляю, дорогой Аматор! Это очень неплохое решение, особенно если использовать варианты с поперечным расположением. У них нелинейность заведомо меньше, чем у продольных.

«А»: Тогда, может, приступим к выбору типа полевого транзистора для этой цели?

«С»: Мы бы немедленно приступили к этой работе, случись нам говорить на эту тему лет двадцать назад! Но мы говорим об этом именно сегодня. Поэтому я просто обязан заметить, что наиболее высокую степень линейности регулирования достигают не с помощью jFET или MOSFET, а с помощью совершенно иных приборов — ОПТРОНОВ и XОЛЛОTPОHОB!

«А»: О холлотронах я слышу вообще в первый раз!

«С»: Холлотрон — это преобразователь, основанный на эффекте Холла, управляемый магнитным полем. У этого прибора есть немало сторонников, но я не из их числа. Иное дело — ОПТРОН!

Вообще оптическая электроника — это бескрайний Океан! В нем можно утонуть с головой!

«Н»: Если перед этим акулы не съедят!

«С»: А их, поверь, хватает! Оптоэлектроника — это стремительно развивающаяся область электроники, оптики и еще Бог знает чего! Я листал недавно ведомственный справочник, так оптоэлектронные приборы занимают уже отдельные тома! Каких там только нет!? Так вот, из всего этого великолепия я выбрал один прибор, который существует, можно сказать, именно для нашего случая.

«А»: Ну, Спец, не томите душу…

«С»: Не стану. Вот я изобразил этот прибор схематически (рис. 20.3).

КВ-приемник мирового уровня? Это очень просто! - _125.jpg

«Н»: Только и всего?

«А»: Как сказал муравей, увидав слона…

«С»: Дорогой Незнайкин, а разве этого мало? Все гениальное сперва может и не казаться таковым. Очевидно, ты просто не вдумался в то, что видишь?

«Н»: Ну, я так понимаю, что внизу изображен светодиод. А вверху, очевидно, фоторезистор. Когда светит светодиод — сопротивление фоторезистора Rф МИНИМАЛЬНОЕ, а когда он не светит, то МАКСИМАЛЬНОЕ!

«С»: Все правильно, но не совсем. Дело в том, что излучающий светодиод имеет ЛИНЕЙНУЮ характеристику интенсивности излучения от величины тока, проходящего через него. Следовательно, фоторезистор Rф будет также ЛИНЕЙНО и плавно изменять свое сопротивление!

«А»: Это действительно здорово! Во-первых, у сигнальной цепи НИКАКОЙ гальванической связи с управляющей цепью НЕТ! Даже у полевых транзисторов реальная АССИМЕТРИЯ характеристик, если поменять местами сток и исток все равно существует!

А здесь ее просто нет! А как называется это чудо?

«С»: С удовольствием сообщаю. Это АОР-124. Его данные мы помещаем в наш с вами справочник. Но мы связались с высокими частотами, однако ещё не решили вопрос, какими марками кабелей и разъемов мы с вами будем осуществлять коммутацию высокочастотных блоков? Поскольку обычные проводники длинною 7—10 см для передачи ВЧ-сигналов совершенно не пригодны. Они и сами «излучают» и «принимают» на себя высокочастотные электромагнитные поля.

«Н»: Я раньше думал, что кабель используется только для подачи сигнала от коллективной антенны к телевизору!

«А»: Полагаю, что теперь уже ты так не думаешь! Но я бы попросил рассказать о кабелях вас, Спец!

«С»: Линии передачи сигнала играют ответственную роль в радиочастотных цепях, где они используются в качестве путевода для сигналов от одного участка схемы к другому. Интересно, что линии передачи сигнала являются как бы исключением из того принципа, согласно которому полное сопротивление источника сигнала, в идеале, должно быть малым по сравнению с сопротивлением нагрузки, создаваемым возбуждаемой целью; а нагрузка должна иметь входное сопротивление, которое превышает сопротивление источника, к которому она (нагрузка) подключена. Вот как раз для линий передачи оказывается, что нагрузка должна иметь сопротивление, РАВНОЕ волновому сопротивлению линии.

«А»: В этом случае говорят, что «линия согласована»?

«С»: Именно так! При этом сами линии передачи сигнала бывают, в основном, двух видов: ПАРАЛЛЕЛЬНЫЕ ПРОВОДНИКИ и КОАКСИАЛЬНЫЕ ЛИНИИ. Именно коаксиальные линии используются в виде коротких отрезков с разъемами типа BNC (байонетными) для передачи сигналов между приборами, или блоками, или даже отдельными узлами. Коаксиальные линии, будучи полностью экранированными, исключают влияние излучения и наводок от внешних сигналов.

«А»: Я встречался с определениями, что такой-то кабель обладает «волновым сопротивлением — 75 Ом». Или 50 Ом. Что имеется в виду?

«С»: Это значит, что волна, бегущая по линии, имеет отношение напряжение/ток, равное Z0. Это Z0 обычно равно или 75 или 50 Ом. При работе с ВЧ сигналами ОЧЕНЬ ВАЖНО «согласовать» нагрузку с волновым сопротивлением линии.

«А»: В связи с тем, что «согласованная» нагрузка может передать импульс в оконечное устройство без искажений?

«С»: Верно! Причем именно в этом случае вся мощность сигнала попадает в нагрузку. Поэтому при конструировании узлов мы будем пользоваться коаксиальными линиями. Следовательно, входы и выходы ВЧ блоков будут выполняться с использованием ВЧ-разъемов.

«А»: Разъемы типа BNC (байонет) очень распространены. Их насчитывается десятки видов! Какие модификации найдут непосредственное применение в нашей разработке?

«С»: Вообще самые распространенные — это пара: СР-50-74 ПВ и СР-50-73 ФВ, рассчитанные на применение кабелей с внешним диаметром 3,5 мм. Но для нас наиболее предпочтительными являются такие пары, как: СР-50-104 ФВ и СР-50-103 ФВ или подобные им. Они рассчитаны на кабели с внешним диаметром 2,5 мм.

Ну вот, пожалуй и все по общим вопросам!

«Н»: Теперь можно перейти к схемотехнике?

«С»: Да, если бы не одна «мелочь». А именно, чем вы, друзья мои, собираетесь запитывать макет, а затем и конструктивно оформленные блоки радиоприемника?

«Н»: То есть необходим некий блок питания? А какое выходное напряжение он должен выдавать?

«А»: Полагаю, Незнайкин, что Н И КАКИМ одним выходным напряжением мы не обойдемся!

«С»: Правильная мысль! Давайте прикинем: для питания ОУ, а они у нас явно найдут применение, необходимо симметричное (как «+», так и «-») напряжение 15 вольт. Или, по меньшей мере, симметричное напряжение 10 вольт! Затем напряжение для ЦОУ. Его величина составляет + 7,5 вольт. Затем, относительно высокое напряжение для варикапов +30 вольт. Для питания усилителей, гетеродинов, преобразователей и наконец, УНЧ (усилителя низкой частоты) — тоже необходимо симметричное напряжение 15 вольт.

«А»: То есть необходимы, как минимум, ТРИ напряжения относительно мощных, способных отдать ток до 300 мА. И одно напряжение (для запитки варикапов), имеющее крайне незначительную токовую нагрузку.

«С»: Действительно, сами варикапы тока, практически, не потребляют! Но стабилизатор, запитывающий варикапы, некоторый ток все же потребляет. А поскольку напряжение на варикапы подается с движка многооборотного переменного резистора ППМЛ-1И, то важен номинал этого резистора. Наиболее предпочтителен номинал 22 кОм. Следовательно, ток потребляемый этим резистором, — около 2 мА. И внутреннее потребление стабилизатора — тоже, примерно, 2–3 мА. Вот из этого и будем исходить.

«Н»: Но ведь батарейки нас не спасут?

«А»: Ну конечно не спасут! Так что некий «лабораторный блок» сетевого питания строить все равно придется.

«С»: Это не проблема. Тем более, что это далеко не напрасный труд! Или этот же лабораторный блок, или такой же подобный, все равно должен войти в состав радиоприемника.

54
{"b":"583087","o":1}