ЛитМир - Электронная Библиотека
ЛитРес представляет: бестселлеры месяца
11 месяцев в пути, или Как проехать две Америки на велосипеде
Светлячок
Краденое счастье
Жизнь взаймы
Учитель поневоле. Курс боевой магии
Город драконов. Книга вторая
Нетерпение сердца. Мария Стюарт
Струны волшебства. Книга третья. Рапсодия минувших дней
Япония. Все тонкости
Содержание  
A
A

«А»: А какую частоту генерации мы принимаем для второго гетеродина, частота колебаний которого стабилизирована. кварцем?

«С»: Все зависит от того, какую мы выберем ВТОРУЮ ПРОМЕЖУТОЧНУЮ частоту. Из определенных конструктивных соображений, вторая ПЧ (промежуточная частота) выбирается равной 1,465 кГц. Итак, вторую ПЧ принимаем равной именно этой величине — 1,465 кГц!

«А»: Следовательно, второй гетеродин будет содержать кварц, частота резонанса которого — 54,045 МГц?

«С»: Вот что значит прилежно изучать в школе математику! Следует сказать, что резонансную частоту LC-генератора можно стабилизировать, если в цепь обратной связи включить кварцевый резонатор. Для обеспечения лучшей стабильности, целесообразно использовать частоту его (кварца) последовательного резонанса. В качестве исходных схем генераторов, обычно используются схемы Хартли или Колпитца.

«А»: А что они из себя представляют?

«С»: Да вот, посмотрите на рис. 23.5.

КВ-приемник мирового уровня? Это очень просто! - _143.jpg

Для возникновения колебаний необходимо, чтобы колебательный контур был настроен на частоту кварцевого резонатора. Но можно выбрать частоту колебательного контура как ЦЕЛОЕ КРАТНОЕ резонансной частоты колебаний кварца и возбудить, тем самым, резонатор на соответствующей КРАТНОЙ ГАРМОНИКЕ!

«Н»: Какую же из двух схем выбирать?

«А»: Можешь кинуть монетку… А там — как ляжет! А что посоветует нам Спец?

«С»: Я просто приведу практически проверенную и хорошо зарекомендовавшую себя принципиальную схему (рис. 23.6).

КВ-приемник мирового уровня? Это очень просто! - _144.jpg

«А»: Задающий генератор здесь собран по схеме Хартли, это понятно! А какие параметры имеет задающая индуктивность?

«С»: Каркас этой катушки изготовлен из фторопласта и соответствует типу V.

«Н»: А что это за включение двух транзисторов после задающего генератора?

«А»: Это одно из очень удачных схемотехнических решений — так называемая КАСКОДНАЯ СХЕМА. В данном случае применена каскодная схема с емкостной связью! Среди особых достоинств этих схем можно полагать следующие:

1. Малую внутреннюю обратную связь, почти на ДВА ПОРЯДКА меньшую, чем у обычного каскада с ОЭ. Это обеспечивает ВЫСОКИЙ УСТОЙЧИВЫЙ коэффициент усиления.

2. Коэффициент шума всей схемы равен коэффициенту шума первого каскада.

3. Выходная проводимость мала, что позволяет применять ПОЛНОЕ включение контура в цепь коллектора выходного транзистора. Это, в свою очередь, обеспечивает ВЫСОКУЮ СЕЛЕКТИВНОСТЬ.

4. Схема обладает ВЫСОКИМ ВХОДНЫМ сопротивлением, следовательно, не нагружает задающий генератор.

«Н»: А насколько эта схема требовательна к высокостабильному питанию?

«С»: Ну, в этом отношении, ВСЕ гетеродины — гурманы! Но… в разной степени. Поскольку в данном случае колебания стабилизированы кварцем, то вполне достаточно ограничиться упрощенным стабилизатором. Вот, например, таким (рис. 23.7).

КВ-приемник мирового уровня? Это очень просто! - _40.jpg_0

«А»: Это для запитки всего генератора или только КАСКОДНОГО УСИЛИТЕЛЯ?

«С»: Только КАСКОДНИКА! Что же касается собственно задающего генератора, то, как говорится, кашу маслом не испортишь! Поэтому для задающего генератора применим вот такой, рассмотренный выше, вариант СН (рис. 23.8).

КВ-приемник мирового уровня? Это очень просто! - _41.jpg_0

«А»: Как я понимаю, кварцевый генератор вместе с автономным стабилизатором, лучше собрать на отдельной плате?

«С»: Дружище, ты в этом абсолютно прав! Ну, а если всю эту прекрасную технику ты разместишь в аккуратном, экранированном блочке — обечайке, и выведешь его выход на ВЧ-разъем, то, кроме хорошего, ничего плохого в этом просто не будет!

«А»: Я, пожалуй, последую этому доброму, дружескому совету!

Глава 24. «Мелочам» — особое внимание!

«Спец»: После того, как мы разобрались с гетеродинами, пора взяться и за СМЕСИТЕЛИ!

«Аматор»: А вы не считаете, что на этом вопросе следует остановиться немного более подробно?

«С»: Почему бы и нет? Но, должен сказать, и задачка же это! Преобразование частоты — один из самых важнейших разделов радиотехники! И, следует заметить, один из самых непростых ее разделов. Имеется множество школ и направлений! Порой одни не понимают других…

«А»: Как в том анекдоте, где коллекционер марок возмущался по поводу того, как это можно, да как это только может в голову прийти кому-то коллекционировать спичечные этикетки?!

«С»: Отчасти… Тем не менее, современная электроника действительно в этом вопросе идет СРАЗУ ПО НЕСКОЛЬКИМ ПУТЯМ!

«Незнайкин»: Это как знаменитый граф Сен-Жермен, который выехал из какого-то города СРАЗУ через ВСЕ ВОРОТА?

«С»: Уважаю юмор! Но вот интересно, как бы вы поступили, будучи специалистами по преобразователям частоты?

«А»: Досадно, но мы с Незнайкином не можем еще считать себя таковыми…

Может быть когда-нибудь, в будущем…

«С»: Но живем-то мы в настоящем! Поэтому попытаемся здраво уяснить себе основное. Преобразование частоты сводится, в сущности, к реализации ДВУХ процессов:

а) перемножению двух переменных напряжений — СИГНАЛА и ГЕТЕРОДИНА;

б) ВЫДЕЛЕНИЮ, посредством некоего фильтра ОДНОЙ ИЗ многочисленных КОМБИНАЦИОННЫХ ЧАСТОТ, взятой нами в качестве ПРОМЕЖУТОЧНОЙ.

«Н»: То есть мы по определению, творим произвол?

«С»: В отличие от произвола политического, технический в данном случае ВО БЛАГО! В самом деле, мы можем взять РАЗНОСТЬ двух частот, но можем взять и их СУММУ!

Так вот, перемножение осуществляется посредством подачи преобразуемых колебаний в электрическую цепь, коэффициент передачи которой ПЕРИОДИЧЕСКИ ИЗМЕНЯЕТСЯ с частотой гетеродина! Однако, эта цепь должна быть КАК МОЖНО БОЛЕЕ ЛИНЕЙНА по отношению к принимаемому СИГНАЛУ.

«А»: Но, несмотря на это, в преобразователях частоты (смесителях) имеются и НЕЛИНЕЙНЫЕ элементы?

«С»: Так ОНИ-ТО и служат для получения коэффициента передачи, изменяющегося с частотой гетеродина! Поэтому можно сказать, что элементы преобразователя должны быть подобраны таким образом, чтобы оставаясь ВСЕГДА ЛИНЕЙНЫМИ по отношению К ВХОДНОМУ СИГНАЛУ, являться ВСЕГДА НЕЛИНЕЙНЫМИ по отношению к высокочастотному СИГНАЛУ ГЕТЕРОДИНА!

«А»: Но ведь это возможно только в одном единственном случае! Если НАПРЯЖЕНИЕ СИГНАЛА МАЛО ПО СРАВНЕНИЮ С НАПРЯЖЕНИЕМ ГЕТЕРОДИНА!

«С»: Блестяще!.. Кто знает, дорогой Аматор, возможно пройдут годы и ТВОЕ имя будет вписано золотыми буквами в историю покорения человечеством преобразователей частоты!

«Н»: Я горжусь тобой, дружище!

«А»: Поздравительные адреса прошу класть на краешек вон того стула!

«С»: Отдохнули?… А теперь, как сказал Бывалый, пора… на работу!

Так вот, НЕЛИНЕЙНЫМИ ХАРАКТЕРИСТИКАМИ, пригодными для преобразования частоты, обладают транзисторы, диоды, электронные лампы и многие другие приборы. Но, испытав в свое время, как преобразователи на биполярных транзисторах, так и на FET; как на варикапах, так и на лампах, могу сказать только одно.

Я выбрал вполне определенный тип преобразователя!

Преобразователь частоты на диодах Шоттки! А если еще точнее — ШИРОКОПОЛОСНЫЙ ДИОДНЫЙ КОЛЬЦЕВОЙ СМЕСИТЕЛЬ (преобразователь частоты) НА ДИОДАХ ШОТТКИ!

«А»: Кажется я где-то читал, что они не обладает усилением?

62
{"b":"583087","o":1}
ЛитРес представляет: бестселлеры месяца
Чистый лист
Капитализм в Америке: История
BOSS на час
1917: Трон Империи
Что вы несете, или Как разобраться в идеях великих философов, чтобы понять себя
Растения-антивирусы. Гриппу – бой! Быстрое и надежное лечение вирусных заболеваний
Мрачная история
Сиротка. Книга 1
Мой идеальный монстр